Skip to main content

Parenthesis matching without using stack

If we have an expression in which only parenthesis '( )' is used and wanted to check that it has matching pairs, we can use this simple Technic to find out whether the expression is correct or not.
 

Algorithm for parenthesis matching without using stack:

In this algorithm, we will use COUNTER to count the difference of count of opening and closing parenthesis. The step are as follows:
  • Set COUNTER = 0 and VALID = true
  • Get the input string
  • While the end of string
    • If the current character is left parenthesis
      • Increment counter i.e. ++COUNTER
    • If the current character is right parenthesis
      • Decrement counter i.e. - -COUNTER
    • If at any step closing parenthesis occur having no opening parenthesis i.e. COUNTER < 0
      • VALID = false
  • Return  COUNTER == 0 &&  VALID
Limitations:
  • Can check only one type of bracket

Function to check matching parenthesis without using stack:


int check_parenthesis(char *str){
 int counter = 0, i = -1, valid = 1;
 while(str[++i]){
  if(str[i] == ' ')
   continue;
  if(str[i] == '(')
   counter++;
  if(str[i] == ')')
   counter--;
  if(counter < 0){
   valid = 0;
  }
 }
 return valid && counter == 0;
}

 

Program to check matching parenthesis without using stack:


#include <stdio.h>
int check_parenthesis(char *str){
 int counter = 0, i = -1, valid = 1;
 while(str[++i]){
  if(str[i] == ' ')
   continue;
  if(str[i] == '(')
   counter++;
  if(str[i] == ')')
   counter--;
  if(counter < 0){
   valid = 0;
  }
 }
 return valid && counter == 0;
}

int main(){
 char *str = "()(()())";
 if(check_parenthesis(str)){
  printf("String %s has matching parenthesis\n", str);
 }
 else{
  printf("String %s hasn't matching parenthesis\n", str);
 }
}

 
String (A+B)*((C/D)-(E*F)) has matching parenthesis
 

Comments

Popular posts from this blog

Insertion at specific position N in singly link list

Insertion of a new node at position N in singly link list requires traversing the list for N-1 th node so that links are updated to accommodate the new node in the list. The new node's next is set to point to Nth node of the list and then N-1 th node's next pointer is updated so that it reference to new node. The step by step algorithm to insert node at Nth position is as below: Algorithm to insert node at specific position N in singly link list: This algorithm will insert the new node PTR at the position N in the link list. The steps are as follows: Create new node PTR Set the INFO field of PTR If N is less than 1 Node can't be inserted Else If node is to be inserted at first i.e. [N=1] Make new node PTR points to first node i.e. [PTR->NEXT = START] Make START point to new node PTR i.e. [START = PTR] Else Traverse the list to get the (N-1)th node of list into TEMP Make PTR's next pointer point to Nth node in the list i.e. [PTR -> NEXT  =  TEMP-...

Concatenating two link list

Here we will see how to concat two single link list into other link list. First we copy the content of first list in third list and then the content of second list into third list. Algorithm for concatenation of two link list: This algorithm will use three list. List 1 and List 2 will be concatenated into List 3. The step below: Copy the list 1 into list 3 Copy the list 2 at the last of list 3 Function to concat two link list: void concatLists(NODE **start1, NODE **start2, NODE **mergeinto){ NODE *temp; temp = *start1; while(temp != NULL){ insertAtLast(&*mergeinto, temp->info); temp = temp->next; } temp = *start2; while(temp != NULL){ insertAtLast(&*mergeinto, temp->info); temp = temp->next; } }   Program to concat two link lists: #include <stdio.h> #include <malloc.h> struct node{ int info; struct node *next; }; typedef struct node NODE; void insertAtLast(NODE **, int); void traverse(NODE **); void concatLists(NODE **,...

Prefix to Infix Conversion

With a given Prefix Expression, we will see how to convert Prefix Expression into Infix Expression using stack.   Algorithm to convert Prefix Expression to Infix Expression: In this algorithm, we will use stack to store operands during the conversion. The step are as follows: Read the prefix string While the end of prefix string scanned from right to left symb = the current character If symb is an operator poped_sym1 = pop the stack poped_sym2 = pop the stack concat the string  STR = ( poped_sym1 )+ ( operator )+( poped_sym2 ) push the string STR into stack Else push the operand symb into stack End If End While infix_str = pop the stack   Function to convert Prefix Expression to Infix Expression: void prefix_to_infix(char prefix[], char infix[]){ char op[2]; //operator string char poped1[MAX]; char poped2[MAX]; char temp[MAX]; int i = strlen(prefix); op[1] = '\0'; while(--i != -1){ if(prefix[i] == ' '){ continue; } if(isoper...