Skip to main content

Deletion of node at specific position N in singly link list

Deletion of node at specific position N requires traversing the link list to find the N-1 th node so that we can make it's next pointer points to N+1 th node.
In the process of deletion of node at specific position, first we check whether the list has some nodes and the position N should be less than number of nodes in the list. It would be error to delete the node which doesn't exist in the list.
When deleting the node we come up with the conditions when we will not able to access the N-1 th and N+1 th node for first and last node respectively. These conditions will be handled seperately. So let us see the algorithm to implement deletion of node at specific position below:

Algorithm to delete node at position N:

The alrorithm presented here uses START as pointer to first node and N is the specific position of node that is to be deleted. TEMPs are temporary pointers that is used in deletion process.
  • Set TEMP = START
  • If START == NULL or N < 1
    • There is no node or invalid position
  • Else
    • if ( N == 1)
      • Set START = START->NEXT
    •  Else
      • Traverse the list for (N-1)th node using TEMP
      • Set TEMP2 = TEMP->NEXT
      • Set TEMP->NEXT = TEMP->NEXT->NEXT
      • Free (TEMP2)
    • End If
  • End If
   


 

Function to delete node at position N:

 

int deleteAtPosition(NODE **start, int pos){
 NODE *temp = *start, *temp2;
 int info = -1, i;
 if(*start == NULL || pos < 1){
  printf("\nError : List have no node or invalid position");
 }
 else{
  if(pos == 1){
   info = (*start)->info;
   *start = (*start)->next;
   free(temp);
  }
  else if ((*start)->next != NULL){ //node has atleast 2 nodes
   for(i = 2; i < pos; i++){
    temp = temp->next;
    if(temp->next == NULL){
     printf("\nError: Position is greater than node count\n");
     return -1;
    }
   }
   info = temp->next->info;
   temp2 = temp->next;
   temp->next = temp->next->next;
   free(temp2);
  }
  else{
   printf("\nInvalid deletion");
  }
 }
 return info;
}

 

Program to delete node at position N in the singly link list:

 

#include <stdio.h>
#include <malloc.h>

struct node{
 int info;
 struct node *next;
};
typedef struct node NODE;

void insertAtFirst(NODE **, int);
int deleteAtPosition(NODE **, int);
void traverse(NODE **);

int main(){
 
 NODE *start = NULL;
 
 insertAtFirst(&start, 4); //4
 insertAtFirst(&start, 5); //5  4
 insertAtFirst(&start, 3); //3  5  4
 traverse(&start);// 3  5  4
 deleteAtPosition(&start,2); //3  4
 printf("\n");
 traverse(&start);// 3  4
 deleteAtPosition(&start,2);// 3
 printf("\n");
 traverse(&start);// 3
 return 0;
}


int deleteAtPosition(NODE **start, int pos){
 NODE *temp = *start, *temp2;
 int info = -1, i;
 if(*start == NULL || pos < 1){
  printf("\nError : List have no node or invalid position");
 }
 else{
  if(pos == 1){
   info = (*start)->info;
   *start = (*start)->next;
   free(temp);
  }
  else if ((*start)->next != NULL){ //node has atleast 2 nodes
   for(i = 2; i < pos; i++){
    temp = temp->next;
    if(temp->next == NULL){
     printf("\nError: Position is greater than node count\n");
     return -1;
    }
   }
   info = temp->next->info;
   temp2 = temp->next;
   temp->next = temp->next->next;
   free(temp2);
  }
  else{
   printf("\nInvalid deletion");
  }
 }
 return info;
}
void insertAtFirst(NODE **start, int info){
 NODE *ptr = (NODE*) malloc(sizeof(NODE));
 ptr->info = info;
 ptr->next = *start;
 *start = ptr;
}

void traverse(NODE **start){
 NODE *temp;
 temp = *start;
 while(temp != NULL){
  printf("%d  ", temp->info);
  temp = temp->next;
 }
}

Output:
3  5  4
3  4
3



 

Comments

Popular posts from this blog

Prefix to Infix Conversion

With a given Prefix Expression, we will see how to convert Prefix Expression into Infix Expression using stack.   Algorithm to convert Prefix Expression to Infix Expression: In this algorithm, we will use stack to store operands during the conversion. The step are as follows: Read the prefix string While the end of prefix string scanned from right to left symb = the current character If symb is an operator poped_sym1 = pop the stack poped_sym2 = pop the stack concat the string  STR = ( poped_sym1 )+ ( operator )+( poped_sym2 ) push the string STR into stack Else push the operand symb into stack End If End While infix_str = pop the stack   Function to convert Prefix Expression to Infix Expression: void prefix_to_infix(char prefix[], char infix[]){ char op[2]; //operator string char poped1[MAX]; char poped2[MAX]; char temp[MAX]; int i = strlen(prefix); op[1] = '\0'; while(--i != -1){ if(prefix[i] == ' '){ continue; } if(isoper...

Concatenating two link list

Here we will see how to concat two single link list into other link list. First we copy the content of first list in third list and then the content of second list into third list. Algorithm for concatenation of two link list: This algorithm will use three list. List 1 and List 2 will be concatenated into List 3. The step below: Copy the list 1 into list 3 Copy the list 2 at the last of list 3 Function to concat two link list: void concatLists(NODE **start1, NODE **start2, NODE **mergeinto){ NODE *temp; temp = *start1; while(temp != NULL){ insertAtLast(&*mergeinto, temp->info); temp = temp->next; } temp = *start2; while(temp != NULL){ insertAtLast(&*mergeinto, temp->info); temp = temp->next; } }   Program to concat two link lists: #include <stdio.h> #include <malloc.h> struct node{ int info; struct node *next; }; typedef struct node NODE; void insertAtLast(NODE **, int); void traverse(NODE **); void concatLists(NODE **,...

Implementation of Stack to store different data types

Here we will see how to implement stack using structure and union to store different datatypes in stack. First we define the basic structure for elements/items to be stored in the stack. struct Items{ int ele_type; union { int ivalue; float fvalue; char *strvalue; } stack_element; }; In the above code, we have defined a Items structure to store the info about the type of items in ele_type variable and a union variable named stack_element to store the actual value of stack items. In union the, ivalue is used to store the integer value, fvalue to store floating value and strvalue to store the string value. If you wish to add other datatype, you can add any datatype within the union. Now we will define the structure to implement the stack. The code below: struct Stack{ int top; struct Items element[MAX]; }; In the above code, struct Stack is defined to hold the top of stack and the array of Items structure named element to hold the actual Items defined above. MA...