Skip to main content

Deletion of last node in singly link list

Now we will see how to delete node at last position in singly link list.

Algorithm to delete last node in singly link list:

  • Set TEMP = START
  • If START != NULL
    • If list has only one node i.e. [START->NEXT == NULL ]
      • Set START = NULL
    • Else
      • Traverse the list so that TEMP points to second last node
      • Make second last node point to nothing i.e. [TEMP->NEXT = NULL]
    • End If
  • End If

Function to delete last node in singly link list:

 

int deleteLast(NODE **start){
 NODE *temp = *start;
 int info = -1;
 if(*start == NULL){
  printf("\nNo nodes exists in the list");
 }
 else if((*start)->next == NULL){
  info = (*start)->info;
  free(*start);
  *start = NULL;
 }
 else{
  while(temp->next->next != NULL){
   temp = temp->next;
  }
  info = temp->next->info;
  free(temp->next);
  temp->next = NULL;
 }
 return info;
}

 

Program to delete last node in the singly link list:

 

#include <stdio.h>
#include <malloc.h>

struct node{
 int info;
 struct node *next;
};
typedef struct node NODE;

void insertAtFirst(NODE **, int);
int deleteLast(NODE **);
void traverse(NODE **);

int main(){
 
 NODE *start = NULL;
 
 insertAtFirst(&start, 4);
 insertAtFirst(&start, 5); 
 traverse(&start);
 deleteLast(&start);
 printf("\n");
 traverse(&start);

 return 0;
}


int deleteLast(NODE **start){
 NODE *temp = *start;
 int info = -1;
 if(*start == NULL){
  printf("\nNo nodes exists in the list");
 }
 else if((*start)->next == NULL){
  info = (*start)->info;
  free(*start);
  *start = NULL;
 }
 else{
  while(temp->next->next != NULL){
   temp = temp->next;
  }
  info = temp->next->info;
  free(temp->next);
  temp->next = NULL;
 }
 return info;
}

void insertAtFirst(NODE **start, int info){
 NODE *ptr = (NODE*) malloc(sizeof(NODE));
 ptr->info = info;
 ptr->next = *start;
 *start = ptr; 
}

void traverse(NODE **start){
 NODE *temp;
 temp = *start;
 while(temp != NULL){
  printf("%d  ", temp->info);
  temp = temp->next;
 }
}

Output:
5  4
5



 

Comments

Popular posts from this blog

Insertion at specific position N in singly link list

Insertion of a new node at position N in singly link list requires traversing the list for N-1 th node so that links are updated to accommodate the new node in the list. The new node's next is set to point to Nth node of the list and then N-1 th node's next pointer is updated so that it reference to new node. The step by step algorithm to insert node at Nth position is as below: Algorithm to insert node at specific position N in singly link list: This algorithm will insert the new node PTR at the position N in the link list. The steps are as follows: Create new node PTR Set the INFO field of PTR If N is less than 1 Node can't be inserted Else If node is to be inserted at first i.e. [N=1] Make new node PTR points to first node i.e. [PTR->NEXT = START] Make START point to new node PTR i.e. [START = PTR] Else Traverse the list to get the (N-1)th node of list into TEMP Make PTR's next pointer point to Nth node in the list i.e. [PTR -> NEXT  =  TEMP-...

Implementation of Stack to store different data types

Here we will see how to implement stack using structure and union to store different datatypes in stack. First we define the basic structure for elements/items to be stored in the stack. struct Items{ int ele_type; union { int ivalue; float fvalue; char *strvalue; } stack_element; }; In the above code, we have defined a Items structure to store the info about the type of items in ele_type variable and a union variable named stack_element to store the actual value of stack items. In union the, ivalue is used to store the integer value, fvalue to store floating value and strvalue to store the string value. If you wish to add other datatype, you can add any datatype within the union. Now we will define the structure to implement the stack. The code below: struct Stack{ int top; struct Items element[MAX]; }; In the above code, struct Stack is defined to hold the top of stack and the array of Items structure named element to hold the actual Items defined above. MA...

Prefix to Infix Conversion

With a given Prefix Expression, we will see how to convert Prefix Expression into Infix Expression using stack.   Algorithm to convert Prefix Expression to Infix Expression: In this algorithm, we will use stack to store operands during the conversion. The step are as follows: Read the prefix string While the end of prefix string scanned from right to left symb = the current character If symb is an operator poped_sym1 = pop the stack poped_sym2 = pop the stack concat the string  STR = ( poped_sym1 )+ ( operator )+( poped_sym2 ) push the string STR into stack Else push the operand symb into stack End If End While infix_str = pop the stack   Function to convert Prefix Expression to Infix Expression: void prefix_to_infix(char prefix[], char infix[]){ char op[2]; //operator string char poped1[MAX]; char poped2[MAX]; char temp[MAX]; int i = strlen(prefix); op[1] = '\0'; while(--i != -1){ if(prefix[i] == ' '){ continue; } if(isoper...